

Water determination in dimethyl sulfoxide (DMSO)

HYDRANAL™ Laboratory Report L 141

It is not possible to reproduce water determination in DMSO because it alters the stoichiometry of the Karl Fischer (KF) reaction. This shortcoming becomes even greater as the number of samples increases.

We tested the water content in different DMSO sample quantities according to the following procedure. 30 mL of Hydranal-

Methanol Rapid, Hydranal-Methanol dry or Hydranal-CompoSolver E were introduced into the titration vessel and titrated to dryness with Hydranal-Composite 5.

The sample (or sample plus water) was then added and titrated with Hydranal-Composite 5.

Results are compared in the tables below.

Table 1. Water determination in various DMSO sample quantities

| DMSO sample volume | Hydranal-Composite 5 consumption | Water quantity detected | Water content detected |
|--------------------|----------------------------------|-------------------------|------------------------|
| 1.0 mL             | 0.08 mL                          | 0.44 mg                 | 0.044%                 |
| 2.0 mL             | 0.14 mL                          | 0.77 mg                 | 0.038%                 |
| 5.0 mL             | 0.19 mL                          | 1.05 mg                 | 0.021%                 |
| 10.0 mL            | 0.35 mL                          | 1.93 mg                 | 0.019%                 |
| 20.0 mL            | 0.62 mL                          | 3.41 mg                 | 0.017%                 |



HONEYWELL RESEARCH CHEMICALS PORTFOLIO

Riedel-de Haën™ Burdick & Jackson™ Fluka™







# Table 2. Different sample quantities of DMSO added to a defined water quantity (20.0 mg)

| Sample                                | Hydranal-Composite 5 consumption | Water quantity detected | Recovery rate |
|---------------------------------------|----------------------------------|-------------------------|---------------|
| 20 mg H <sub>2</sub> O                | 3.81 mL                          | 20.00 mg                | 100.0%        |
| 20 mg H <sub>2</sub> O + 1.0 mL DMSO  | 3.80 mL                          | 19.95 mg                | 99.75%        |
| 20 mg H <sub>2</sub> O + 2.0 mL DMSO  | 3.77 mL                          | 19.79 mg                | 98.95%        |
| 20 mg H <sub>2</sub> O + 5.0 mL DMSO  | 3.71 mL                          | 19.48 mg                | 97.40%        |
| 20 mg H <sub>2</sub> O + 10.0 mL DMSO | 3.49 mL                          | 18.32 mg                | 91.60%        |
| 20 mg H <sub>2</sub> O + 20.0 mL DMSO | 3.38 mL                          | 17.74 mg                | 88.70%        |

Coulometric tests gave comparable findings:

• Water content detected in 1 mL DMSO: 311 ppm

• Water content detected in 20 mL DMSO: 266 ppm

Control conditions with Hydranal-Water Standard 1.0 (added water quantity: 1000 ppm) in the presence of DMSO produced the following results:

 Water content in the presence of 1 mL DMSO: 994 ppm • Water content in the presence of 20 mL DMSO: 910 ppm

The volumetric and coulometric water content determination tests were carried out with two different samples.

The problem was picked up again in a series of subsequent tests. We ascertained that it is also impossible to perform indirect determination in a KF oven. A temperature ramp from  $50^{\circ}\text{C}$  to  $250^{\circ}\text{C}$  showed that the water is released by azeotropic distillation at temperatures between  $130^{\circ}\text{C}$  and  $190^{\circ}\text{C}$ . It is impossible to separate the water from the DMSO. The titration vessel is influenced in the same way as by direct injection of the sample. The error is comparable to the effect described for direct injection.

#### Conclusion

As a result of the various facts, the recommendation must be made that no more than 1 mL of DMSO should be analyzed. The injection of several samples in a coulometric cell should be avoided. Addition of a 1000 ppm standard shows the current effect on the titration vessel.







#### HYDRANAL™ HOTLINE

## VOLUMETRIC REAGENTS



Europe and International Thomas Wendt HYDRANAL Center of Excellence Tel: +49-5137 999-353 Fax: +49-5137 999-698 hydranal@honeywell.com

34805HYDRANAL-Composite 534734HYDRANAL-CompoSolver E34741HYDRANAL-Methanol dry37817HYDRANAL-Methanol Rapid

# WATER STANDARDS

34828 HYDRANAL-Water Standard 1.0 34426 HYDRANAL-CRM Water Standard 1.0

## AUXILIARIES

34241 HYDRANAL-Molecular Sieve 0.3 nm 34788 HYDRANAL-Humidity Absorber



**Europe and International Agnieszka Kossakowska** HYDRANAL Technical Specialist Tel:+48 512 355 628 hydranal@honeywell.com



USA and Canada
Doug Clark
HYDRANAL Technical Center
Tel: 1-800-Hydranal
(1-800-493-7262)
hydranal@honeywell.com

## To order, please contact:

## **Scientific Lab Supplies**

Wilford Industrial Estate
Ruddington Lane
Wilford
Nottingham NG11 7EP
Tel.: +0115 9821111
Email: slsinfo@scientific-labs.com
www.scientificlabs.co.uk

## Honeywell Specialty Chemicals Seelze GmbH

Wunstorferstrasse 40 30926 Seelze, Germany Tel.: +49 (0)5137-999-353 Fax: +49 (0)5137-999-698 hydranal-honeywell.com All statements and information provided herein are believed to be accurate and reliable, but are presented without guarantee, warranty or responsibility of any kind, express or implied. Statements or suggestions concerning possible use of our products are made without representation or warranty that any such use is free of patent infringement, and are not recommendations to infringe any patent. The user should not assume that all safety measures are indicated herein, or that other measures may not be required. User assumes all liability for use of the information and results obtained. WITHOUT LIMITING THE FOREGOING, HONEYWELL DISCLAIMS THE WARRANTY OF MERCHANTABILITY, FITNESS FOR USE AND NON-INFRINGEMENT. © 2018 Honeywell International Inc.











**(**