Trace analysis arium ${ }^{\circledR}$ comfort

		Detection threshold	Unit	Calculated concentration arium ${ }^{\circledR}$ comfort	Procedure
$\begin{aligned} & \stackrel{\text { n }}{\stackrel{U}{E}} \\ & \frac{\stackrel{U}{U}}{2} \end{aligned}$	Rhenium Re	0.001	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	ICP-MS
	Rhodium Rh	0.002	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	ICP-MS
	Rubidium Rb	0.001	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	ICP-MS
	Ruthenium Ru	0.001	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	ICP-MS
	Samarium Sm	0.001	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	ICP-MS
	Scandium Sc	0.002	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	ICP-MS
	Selenium Se	0.01	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	ICP-MS
	Silver Ag	0.001	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	ICP-MS
	Sodium Na	0.0005	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	ICP-MS
	Strontium Sr	0.0005	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	ICP-MS
	Tantalum Ta	0.001	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	ICP-MS
	Tellurium Te	0.001	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	ICP-MS
	Terbium Tb	0.001	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	ICP-MS
	Thallium TI	0.001	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	ICP-MS
	Thorium Th	0.001	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	ICP-MS
	Thulium Tm	0.001	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	ICP-MS
	Tin Sn	0.002	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	ICP-MS
	Titanium Ti	0.001	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	ICP-MS
	Tungsten W	0.001	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	ICP-MS
	Uranium U	0.001	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	ICP-MS
	Vanadium V	0.0005	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	ICP-MS
	Ytterbium Yb	0.001	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	ICP-MS
	Yttrium Y	0.001	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	ICP-MS
	Zirconium Zr	0.002	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	ICP-MS
ज	Silicon	0.2	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	GF-AAS
	Ammonium NH_{4}^{+}	0.005	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	IC
	Trimethylamine TMA	0.005	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	IC
	Nitrite $\mathrm{NO}_{2}{ }^{-}$	0.005	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	IC
	Nitrate $\mathrm{NO}_{3}{ }^{-}$	0.005	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	IC
	Phosphate $\mathrm{PO}_{4}{ }^{3-}$	0.01	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	IC
	Sulfate $\mathrm{SO}_{4}{ }^{2-}$	0.01	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	IC
Highly volatile org. Compounds (VOC)	1,1,2-Trichloroethane	1	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	GC-MS
	Trichloroethene	1	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	GC-MS
	Tetrachloroethene	1	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	GC-MS
	Tetrachloromethane	1	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	GC-MS
	1,2-Dichloroethane	1	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	GC-MS
	1,1-Dichloroethene	1	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	GC-MS
	1,2-cis-Dichloroethene	1	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	GC-MS
	Chloroform	1	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	GC-MS
	Dichlorobromomethane	1	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	GC-MS
	Dibromochloromethane	1	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	GC-MS
	Tribromomethane	1	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	GC-MS
	Vinyl chloride	1	$\mu \mathrm{g} / \mathrm{L}$ (ppb)	Under detection threshold	GC-MS

