

OmniPAGE Vertical Electrophoresis Systems OmniPAGE Mini

Instruction Manual

Catalogue No: CVS10D

CVS10DSYS CVS10PRE CVS10DSYS-CU

Table of Contents

			Page
Section	n 1	Safety Information	3
	1.1	Safety Precaution	3
Section	າ 2	General Information	4
	2.1	Introduction	4
	2.2	Product Description	4
	2.3	Packing Lists	5
	2.4	Specifications	6
	2.5	Care and Maintenance	7
Section	า 3	Operating Instructions	8
	3.1	Setting up the omniPAGE Gel Tank	8
	3.2	Gel casting	8
	3.3	omniPAGE module assembly and Sample loading	13
	3.4	Gel Running	14
	3.5	Gel Removal	14
Section	า 4	Gel Preparation	14
	4.1	Gel Selection	14
	4.2	Volumes required per gel	15
	4.3	Gel Preparation	16
	4.4	Stacking Gel Preparation	16
	4.5	Buffer Volume	17
	4.6	Gel Running Conditions	17
	4.7	Preparation of denatured protein samples for loading	18
	4.8	Stock Solutions	19
Section	า 5	Trouble Shooting Guide	20
Section	า 6	Product Information	23
	6.1	Catalogue numbers and product descriptions	23
	6.2	Combs	24
	6.3	Catalogue numbers and product descriptions for CSL Related products	26
Section	า 7	Warranty	27

Section 1 Safety Information

1.1 Safety Precaution

When used correctly, these units pose no health risk. However, these units can deliver dangerous levels of electricity and are to be operated only by qualified personnel following the guidelines laid out in this instruction manual. Anyone intending to use this equipment should read the complete manual thoroughly. The unit must never be used without the safety lid correctly in position. The unit should not be used if there is any sign of damage to the external tank or lid.

Acrylamide is a powerful neurotoxin in solution form. Polymerized gels can contain some unpolymerized solution and protective gloves and clothing must be worn.

These units comply with the following European directives:

2006/95/CE Low Voltage Directive and 2014/30/UE (official Title 2004/108/EC) EMC Electromagnetic Compatibility

By virtue of the following harmonised standards:

BS EN IEC 61010-1: 2010 Safety Testing of Lab Equipment BS EN IEC 61326-1:2013 EMC Electro Magnetic Compatibility

Section 2 General Information

2.1 Introduction

Cleaver Scientifics' omniPAGE range of Vertical Gel Units combines ease of use with high resolution separations. Four sizes, Mini 10 x 10cm, Mini Wide 20 x 10cm and Maxi 20 x 20cm, VS 30 x 30cm share a host of common features including a guaranteed leak proof seal required for trouble free, rapid and uncomplicated gel casting. Utilising a built in gel running module eliminates time consuming transfer of glass plates during casting, a process which can cause gel damage and misalignment. Glass plates with permanently bonded spacers guarantee perfect spacer alignment. The glass plate sandwich is then simply inserted between pressure bars and the new zero screw slide clamps clicked into position. This ensures fast set up times while even pressure bars and ultra soft seals guarantee leak proof casting. Once the gel has polymerised, the gel running module is just inserted into the gel tank for electrophoresis.

2.2 Product Description

Cleaver Scientifics' vertical electrophoresis units comes as a complete package including Gel Tank, Safety Lid, Gel Casting Inner Module, Glass plates with bonded spacers, Combs, Multipurpose Key, Power Cables and Cooling pads. Detailed description of all the components is written below.

Gel Tank and Safety Lid	Injection moulded gel tank and safety lid provides a sealed electrophoresis system which is compatible with all major types of 8 X 10cm and 10 x 10cm precast gel. All omniPAGE tanks are equipped with specially designed thumb locators for lifting up the safety lid easily. All safety lids are designed to accommodate the polarity design of the unit. They have special tapped holes which connect with the leading edge of the power cables.		
Inner Module	Injection moulded inner module gives a twofold effectiveness for gel casting and running, thus no need of transferring the glass plates after casting the gel.		
Glass Plates	2mm thick glass plates for the omniPAGE mini and 4mm thick glass plates for rest of the range prevents breakage and have bonded spacers for convenience. All our spacers are colour coded depending upon their thickness.		
Multipurpose Key	CVS10KEY or the multipurpose key can be easily used to separate your notched and plain glass plate to release the gel. The same key can be used to open the CVS10 clamping doors.		
Power Cables	Cleaver Scientifics' power cables are designed with protective retractable connectors which are compatible with most power supplies.		
Cooling Pads	Rapid set up cooling packs enhance resolution eliminating the need of a chiller.		
Combs with special gel loading guides	Special combs (Combicombs) are designed with special oval shaped gel loading guides on the other end of an ordinary comb which can be used.		

2.3 Packing Lists

CVS10D, CVS10DSYS, CVS10PRE, CVS10DSYS-CU

Each unit includes a tank, lid, internal module, electrodes and the following accessories:

	Glass Plates	Combs	Casting base	Cooling Pack	Cables	Screws
CVS10D	VS10NG – Notched,	2 of VS10-12-1		VS10ICB	CSL-CAB	VS10-SCREW x 4
	Pk/2	1mm thick, 12				
	VS10PGS1 – Plain with	sample				
	bonded 1mm spacers,					
	Pk/2					
	VS10-DP – Dummy					
	Plate					
CVS10DSYS	VS10NG – Notched,	2 of VS10-12-1	VS10DCAST	VS10ICB	CSL-CAB	VS10-SCREW x 4
	Pk/2	1mm thick, 12	VS10DCASTM –			
	VS10PGS1 – Plain with	sample	Mat			
	bonded 1mm spacers,					
	Pk/2					
	VS10-DP – Dummy					
	Plate					
CVS10PRE	VS10-DP – Dummy			VS10ICB	CSL-CAB	VS10-SCREW x 4
	Plate					
CVS10DYS-CU	See CVS10DYSYS	See	See CVS10DYSYS	VS10ICB	CSL-CAB	VS10-SCREW x 4
	CVS10EXCASTER	CVS10DYSYS				

Packing list checked by	<i>l</i>	Date

The packing lists should be referred to as soon as the units are received to ensure that all components have been included. The unit should be checked for damage when received.

Please contact your supplier if there are any problems or missing items.

2.4 Specifications of OmniPAGE Vertical Electrophoresis Units

	omniPAGE Mini	omniPAGE Mini	omniPAGE Maxi	omniPAGE VS30
		Wide		
Plate	10x10cm	20 X 10cm	20 X 20CM	30 X 22cm
Dimensions	7.5x8cm	18 X 8cm	16 X 17.5CM	28 X 20cm
Gel Dimensions				
(WxL)				
Unit Dimensions	19x13x15cm	26 X 16 X 16cm	26 X 16 X 28CM	36 X 33 X 18CM
	(W x D x H)	(W X D X H)	(WXDXH)	(WXHXD)
Max Sample	80 Samples	192 Samples	192 Samples	300 Samples per
Capacity	20 Samples per Gel	48 Samples per Gel	48 Samples per Gel	Run
				75 Samples per Gel
Buffer Volume	Min 250ml,	Min 600ml	Min 1200ml	Min1800ml
	Max 1200ml	Max 2800ml	Max 5600ml	Max 8400ml
Combs Available	1, 5, 8MC, 9, 10,	1, 5, 10, 18MC, 24,	1, 5, 10, 18MC, 24,	1, 2, 4, 28MC,
	12, 16MC, 20	30, 36MC, 48	30, 36MC, 48	56MC, 75
No. of Teeth	0.75, 1, 1.5, 2mm	0.75, 1, 1.5, 2mm	0.75, 1, 1.5, 2mm	0.25, 0.35, 0.5, 1,
Thickness				1.5, 2.0mm
Environmental	Maximum Altitude	Maximum Altitude	Maximum Altitude	Maximum Altitude
Operating	2,000 m	2,000 m	2,000 m	2,000 m
Conditions	Temperature	Temperature	Temperature	Temperature
	Range 4°C - 65°C	Range 4°C - 65°C	Range 4°C - 65°C	Range 4°C - 65°C
	Humidity	Humidity	Humidity	Humidity
	Upto 80%	Upto 80%	Upto 80%	Upto 80%
	Not for outdoor	Not for outdoor	Not for outdoor	Not for outdoor
	Use	Use	Use	Use

This apparatus is rated POLLUTION DEGREE 2 in accordance with IEC 664.

POLLUTION DEGREE 2, states that: "Normally only non-conductive pollution occurs.

Occasionally, however, a temporary conductivity caused by condensation must be expected".

2.5 Care and Maintenance

Cleaning Large Format Vertical Units

Units are best cleaned using warm water and a mild detergent. Water at temperatures above 60°C can cause damage to the unit and components.

The inner module should be thoroughly rinsed with warm water or distilled water to prevent buildup of salts but care should be taken not to damage the enclosed electrode and vigorous cleaning is not necessary or advised. Air drying preferably before use.

The units should only be cleaned with the following:

Warm water with a mild concentration of soap or other mild detergent.

Compatible detergents include dishwashing liquid, Hexane and Aliphatic hydrocarbons. The units should not be left in detergents for more than 30 minutes.

The units should never come into contact with the following cleaning agents, these will cause irreversible and accumulative damage:

Acetone, Phenol, Chloroform, Carbon tetrachloride, Methanol, Ethanol, Isopropyl alcohol, Alkalis.

RNase Decontamination

This can be performed using the following protocol:-

Clean the units with a mild detergent as described above.

Wash with 3% hydrogen peroxide (H2O2) for 10 minutes.

Rinsed with 0.1% DEPC- (diethyl pyrocarbonate) treated distilled water.

Caution: DEPC is a suspected carcinogen. Always take the necessary precautions when using. RNaseZAP™ (Ambion) can also be used. Please consult the instructions for use with acrylic gel tanks.

Section 3 Operating Instructions

3.1 Setting up the omniPAGE Gel Tank

Note: Before setting up the Gel Tank please ensure that it has been properly cleaned and dried.

- 1. Note the position of the lid on the unit. This shows the correct polarity and the correct orientation of the cables, black is negative and red positive.
- 2. Remove the lid from the unit.

Note: If the lid is not removed, fitting the cables may result in un-tightening of the gold plug and damage the electrode.

- 3. Screw the cables into the tapped holes as fully as possible so that there is no gap between the lid and the leading edge of the cable fitting.
- 4. Refit the lid and the unit is now ready to be used.

3.2 Gel casting

Cleaning the Glass Plates

Clean a set of glass plates for each gel first with distilled water and then with 70 % ethanol.

One set of glass plates constitutes one notched glass plate and one plain glass plate with bonded spacers.

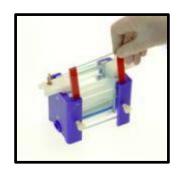
When using a triple glass plate sandwich, two notched glass plates are required, one set of free spacers and a set of plain glass plates with bonded spacers. The plain glass plate is positioned outermost, then a notched glass plate, free spacers and second notched glass plate. Alternatively, accessory notch glass plates with bonded spacers are available.

Note: All glass plates, gel casting modules, casting base and accessories must be completely dry before the set – up. Wet components are more likely to miss-align and cause leaks.

Glass cassette Assembly

Assemble the glass plates so that the bottom of the glass plates and the spacers are perfectly aligned.

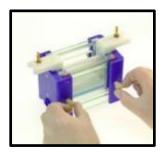
For triple plate sandwiches, the free spacers Need to be perfectly aligned which is best performed using a small spacer or comb to push the spacers apart. Notched glass plates with bonded spacers do not need manual alignment.


NOTE: The glass plates with bonded spacers have an arrow in the top of the spacers which are slightly longer than the glass plate to indicate the top.

Casting Stand Assembly

Position the Slab Gel Insert on a flat surface.

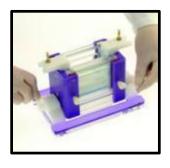
Insert the glass plates into the Slab Gel Insert between the pressure bar and the blue gasket.


The Slab Gel Insert contains pressure bars which impart even pressure onto the glass plates and allow even screw pressure transfer onto the

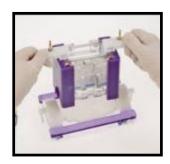
sealing edge of the glass plate, ensuring complete sealing. Ensure that the pressure bars are adequately open for the thickness of spacer used. The bar can be opened by loosening the screws or by sliding the clamps. When using a triple glass plate sandwich, the pressure bars will need to be in the completely open position. Then fully tighten the pressure bar screws in the order top then bottom.

SCREW VERSION

SLIDING CLAMP VERSION



Fully tighten the screw for the Mini vertical and the screws sequentially and in an even manner for the maxi vertical in the order middle two, top then bottom, making sure not to wobble the unit. When using the Slide Clamp Mini version, simply slide both gates outwards until fully tightened. When only one gel is being run, the dummy plate must be used in the second position and fully tightened.


NOTE: At this stage, check that the bottom edges of the spacers and glass plates are perfectly aligned.

Position the Slab Gel Insert in the casting base such that the Cam pins have handles pointing downwards and are located in the insert holes. The top of the GRM may need to be pushed down very slightly to locate the cam pins.

SCREW VERSION

SLIDING CLAMP VERSION

With the cam pin handles facing directly downwards, turn the cam pins fully through 180° or until the insert has tightened onto the silicone mat.

NOTE: It is best to turn the cams in opposite directions to each other. Do not overturn as this will cause the glass plates to push upwards and the assembly will be more likely to leak. The unit is now ready for gel preparation and pouring.

Always reverse the silicone mat after casting to avoid indentations from persisting. Never leave the casting up-stand with glass plates tightened into the casting base for long periods of time as this will also cause indentations in the silicone mat.

The slide clamp version CVS10 also includes screws. This system can be used either with the slide clamps or screws as preferred by the user. For those that prefer to use the screws rather than clamps, the screws can be simply inserted into the screw holes. The clamps can be removed by placing each clamp in the fully open position and gently bending the clamp upwards from the slanted end. The holding pin will then slowly release and the clamp can be removed.

Gel Pouring

Casting a gel with stacking layer

- 1. Place a comb into the gel cassette assembly with any gel and mark the glass plate below the comb teeth.

 This is the reference level to which the resolving gel should be poured.
- 2. Prepare the resolving gel solution. Mix well and avoid generating air bubbles.
- 3. Fill the glass plates smoothly till the mark avoiding generating any air bubbles. Filling must be performed quickly before the TEMED causes the gel to become too viscous.
- 4. Overlay the gel extremely carefully with 1 ml of Isobutanol, Isopropanol or distilled water. When using distilled water extra care must be taken to ensure there is no mixing with the gel solution.
- 5. Let the resolving gel polymerize. Usually this takes around 15 to 30 minutes but this can vary due to the freshness of the reagents used. If polymerization is taken a lot longer than this, use fresher stock solutions or add more APS and TEMED.

- 6. Let the resolving gel polymerize. Usually this takes around 15 to 30 minutes but this can vary due to the freshness of the reagents used. If polymerization is taken a lot longer than this, use fresher stock solutions or add more APS and TEMED.
- 7. Prepare the stacking gel solution.
- 8. Before casting the stacking gel, insert a piece of filter paper to dry the area in between the glass plates above the resolving gel. Take care not to touch the surface of the gel.
- 9. Carefully pour the stacking gel solution, avoiding generating air bubbles.
- 10. Carefully insert the comb making sure that no air bubbles get trapped under the ends of the comb teeth as these will inhibit sample progression.
- 11. Allow the stacking gel polymerize.
- 12. Once the gel is polymerized it is ready for the electrophoresis run.

Casting a gel without stacking layer

- 1. Prepare the resolving gel solution. Mix well and avoid generating air bubbles.
- 2. Pour the solution smoothly into the glass plates avoiding any air bubbles until the top of the notched glass plate is reached.
- 3. Carefully insert the comb making sure that no air bubbles get trapped under the ends of the comb teeth as these will inhibit sample progression.
- 4. Let the gel polymerize. Usually this takes from 15 to 30 minutes but this can vary due to the freshness of the reagents used. If polymerization is taken a lot longer than this, use fresher stock solutions or add more APS and TEMED.
- 5. Once the gel is polymerized it is ready for the electrophoresis run.

Using Precast Gels

- 1. omniPAGE mini is compatible with all the precast gels available in the market.
- 2. Simply remove the precast gel from the storage pouch.
- 3. Gently remove the comb.
- 4. Keep the Inner module upstand on a flat surface and place the precast gel between the pressure bar and the blue gasket.

3.3 omniPAGE module assembly and Sample loading

1. If desired, fit the cooling pack(s) into the end of the tank. These should be pre-frozen and fitted with the longest side positioned sideways with the end(s) of the tank and pressed into the recess. Or these can be fitted down the front of the tank.

Note: NEVER FIT THESE UNDERNEATH THE MODULE IN THE BOTTOM OF THE TANK AS THIS WILL PREVENT THE FLOW OF CURRENT THROUGH THE GEL AND CAUSE SLOW RUNS AND OVER-HEATING.

Note one pack is supplied as standard. Additional packs can be purchased.

- Transfer the Inner gel module containing cast gels into the main tank in the correct orientation as indicated - +ve on the module aligned with +ve on the tank, -ve on the module aligned with -ve on the tank.
- 3. Fill the outer tank with 1 x reservoir buffer. See Page 22 for recommended running buffer solution. **Table 7** shows the volume of buffer required.
- 4. Load the samples into the wells using a pipette tip taking care not to damage the wells or induce any air bubbles.
- 5. Fill any unused wells with 1 X sample buffer.
- 6. It is a good idea to note the orientation and order the samples were loaded in. This can be done by noting which samples were loaded adjacent to each electrode.

3.4 Gel Running

- 1. Fit the lid and connect to a power supply.
- 2. Consult Table 8 for details on recommended power supply voltage settings.

3.5 Gel Removal

- 1. Turn the power supply off when the loading dye reaches the bottom of the gel, sooner if your proteins are below 4Kd in size.
- 2. Remove the gel running module, first emptying the inner buffer into the main tank. Buffer can be re-used but this may affect run quality if continued.
- 3. Unscrew the glass plates with the Screw version. To open the sliding door version insert the CVS10KEY into the recess arch of the clamping door. Twist key applying pressure to both the clamping door and the CVS10D side cheek. The door will now click open. Repeat this process until you have opened both the doors.
- 4. Remove the glass plates. Then using CSLKEY separate notched and the plain glass plates. Place the wedged end of the key between the two plates and gently twist until the plates pull apart. The gel will usually stick to one of the plates and can be removed by first soaking in buffer and then gently lifting with a spatula.
- 5. The gel is now ready to be stained with Coomassie or silver stain or the proteins in the gel can be transferred to a membrane by electroblotting for specific band identification and further analysis.

Section 4 Gel Preparation

4.1 Gel Selection

Care should be taken when selecting the pore size of the gel to be used. The pore size or % of gel determines the resolving ability given different sizes of protein.

See Table 1 below explaining which percentage of gel to use to separate the sizes of proteins indicated.

Table 1 Acrylamide percentages

Acrylamide Percentage	Separating Resolution
5 %	60 - 220 KD
7.5 %	30 - 120 KD
10 %	20 - 75 KD
12%	17 – 65 KD
15 %	15 -45 KD
17.5%	12 – 30 KD

4.2 Volumes required per gel

Table 2 shows the total amount of gel solution required.

omniPAGE Mini CVS10D, CVS10DSYS, CVSPRE, CVS10DSYS-CU				
Number of gels	Gel Thickness	Volume (ml)		
	(mm)			
Single – one gel, one	0.5	3.8		
dummy plate	1.0	7.5		
	1.5	11.3		
	2.0	15.0		
Double – two gels	0.5	7.5		
	1.0	15.0		
	1.5	22.5		
	2.0	30.0		
Using a Triple Plate	0.5	10.0		
sandwich – four gels	1.0	30.0		
	1.5	45.0		
	2.0	60.0		

4.3 Gel Preparation

Prepare gel solutions as per tables below. These give the volumes of solutions from the standard stock solutions. These should be gently mixed avoiding generation of bubbles which will inhibit polymerization by removing free radicals.

Table 3 Preparation of the separating gel solution for two 10 x 10cm CVS10D gels using 1 mm spacers.

Solution	5 %	7.5%	10 %	12%	15 %	17.5%
Distilled Water	8.7ml	7.5ml	6.3ml	5.25ml	3.75ml	2.5ml
30 % Stock Acrylamide Solution	2.5ml	3.75ml	5ml	6ml	7.5ml	8.75ml
4 X Resolving Tris Solution	3.75ml	3.75ml	3.75ml	3.75ml	3.75ml	3.75ml
10 % Ammonium Persulphate	150μΙ	150μΙ	150μΙ	150μΙ	150μΙ	150μΙ

Add 15µl of TEMED to the resolving gel solution for CVS10D sized gels.

4.4 Stacking Gel Preparation

Table 4 A guide to preparing the stacking gel

Solution	CVS10D
Distilled Water	4.2ml
30 % Stock Acrylamide Solution	0.65ml
4 X Stacking Gel Tris Solution	1.6ml
10 % Ammonium Persulphate	67μΙ

4.5 Buffer Volume

Table 5 Buffer Volumes

Buffer Volume	CVS10D
Minimum – Inner tank is filled to above the wells. Outer Tank is	250ml
filled to just flood the bottom of the glass plates. Cooling	
potential is at a minimum which may affect resolution.	500ml
Maximum – Inner tank is filled to above the wells. Outer Tank is	1200ml
filled to the maximum fill line. Cooling is high offering good resolution of samples.	2.8 Litres
Using the cooling packs – Inner tank is filled to above the wells.	1000ml
Cooling packs are inserted behind the gels. Outer Tank is filled to the maximum fill line. Cooling is at a maximum.	2.3 Litres

4.6 Gel Running Conditions

Table 6 Gel Running Conditions

Recommended Voltages and Resultant Current for 1mm thick, 12%	CVS10D
gels.	
One gel	90-225V
	20-45mA
Two gels	90-225V
	40-90mA
Three gels	90-225V
	60-135mA
Four gels	90-225V
	80-180mA

4.7 Preparation of denatured protein samples for loading

The instructions given below are for denatured samples. For Native samples, please consult a laboratory handbook.

- 1. Prepare the protein samples for loading. The volume of sample depends on the capacity of the wells (See Comb specifications section 6.2).
- 2. Using a 0.5 ml micro-centrifuge tube or other convenient receptacle, combine the protein sample and 4 X sample buffer. It is always advisable to use protein markers in one of the end lanes to indicate sizes of bands. These should be prepared according to the manufacturer's instructions.
- 3. Heat the samples in a water bath or heating block for 2 minutes to denature the samples.
- 4. Centrifuge the samples in a micro-centrifuge for 20 seconds at 12,000 rpm. The protein samples are now ready to load.

4.8 Stock Solutions (For SDS PAGE gels)

Stock 30% Acrylamide Gel Solution:

30.0 g acrylamide

0.8 g methylene bisacrylamide

Distilled Water to 100ml

Stock 4 X Resolving Gel Tris (1.5 M Tris HCl pH8.8, 0.4 % SDS)

To 110ml Distilled Water add 36.4 g of Tris base

Add 8ml of 10 % SDS

Adjust pH to 8.8 with 1N HCl

Adjust the final volume to 200ml with Distilled Water.

Stock 4 X Stacking Tris (0.5 M Tris HCL pH6.8, 0.4 % SDS)

To 110ml Distilled Water add 12.12 g of Tris base

Add 8ml of 10 % SDS

Adjust pH to 6.8 with 1N HCl

Add Distilled Water to a final volume of 200ml

Stock 4 X Tris-glycine tank buffer - SDS

36 g Tris base

172.8 g glycine

Distilled Water to 3 L

1 x Tris-glycine tank buffer - SDS

750ml of 4 X Tris-glycine reservoir buffer - SDS

30ml of 10 % SDS

Distilled Water to 3L

10 % AP (ammonium persulphate solution)

0.1 g ammonium persulphate

1ml Distilled Water

TEMED Stock 4 X Sample Buffer

4ml glycerol

2ml 2-mercaptoethanol

1.2 g SDS

5ml 4 X Stacking Tris

0.03 g Bromophenol blue

Aliquot into 1.5ml micro centrifuge tubes. Store at -20°C.

Section 5 Troubleshooting Guide

Problem: Sample Preparation	Cause	Solution
Laemmil sample buffer turns yellow	Sample buffer too acidic	Add Tris base until buffer turns blue again.
Sample very viscous	High DNA or carbohydrate content	Fragment DNA with ultrasonic waves during cell
		lysis and protein solubilization.
		Add endonucleases (for each benzonases).
		Precipitate protein with TCA/acetone to diminish
		carbohydrate content.
Problem: Gel casting and	Cause	Solution
sample loading		
Poor well formation	Incorrect catalyst used	Prepare Fresh catalyst solution.
		Increase catalyst concentration of stacking gel to
		0.06% APS and 0.12% TEMED.
	Monomer solution not degassed	Degas monomer solution immediately prior to
	(oxygen inhibits polymerization)	casting stacking gel.
Webbing; excess acrylamide behind	Incorrect catalyst concentration	Prepare fresh catalyst solution.
the comb		Increase catalyst concentration of stacking gel to
		0.06% APS and 0.12% TEMED.
Gel does not polymerize	Too little or too much APS or TEMED	Use 0.0.05% APS and 0.05% TEMED.
	Failure to degas	Degas monomer solutions 10-15min.
	Temperature too low	Cast at room temperature, warming glass plates if
		necessary.
	Poor quality acrylamide or bis	Use electrophoreses-grade reagents
	Old APS	Prepare fresh APS.
Swirls in the gel	Excess catalysts; polymerization time	Reduce APS and TEMED by 25% each.
	< 10min	
	Gel inhibition; polymerization time	Increase APS and TEMED by 50%; degas.
	>2hr	LI IIII
Gel feels soft	Low %T	Use different %T.
	Poor quality acrylamide or bis Too little cross-linker	Use electrophoresis- grade reagents.
Gel turns white		Use correct %C.
Gel brittle	Bis concentration too high Cross-linker too high	Check solutions or weights. Use correct % cross-linker
Sample floats out of the well	Sample is not dense enough	Induce 10% glycerol in sample to make it denser
Sample floats out of the well	Sample is not delise enough	than surrounding buffer.
	Pipetting, loading error	Slowly pipet sample into well. Do not squirt sample
	ripetting, loading error	quickly into well as it may bounce off bottom or
		sides and flow into next well. Do not pipet tip from
		well before last of sample has left the tip.
		wen before last of sample has left the lip.

Problem: Electrophoresis	Cause	Solution
Current zero or less than expected	Tape at the bottom of precast gel	Remove tape.
and samples do not migrate into gel	cassette not removed	
	Insufficient buffer in inner buffer	Fill buffer chamber with running buffer.
	chamber	
	Insufficient buffer in outer buffer	Fill inner and outer buffer chambers to ensure
	chamber	wells are completely covered.
	Electrical disconnection	Check electrodes and connections.
Gels run faster than expected	Running buffer too concentrated and	Check buffer composition and type.
	gel temperature too high; incorrect	
	running buffer concentration or type	
	used	
	Running or reservoir buffer too	Check buffer protocol and concentrate if
	dilute	necessary.
Cols run slower than expected	Voltage too high Incorrect running buffer composition	Decrease voltage by 25-50%. Check buffer composition and type.
Gels run slower than expected		Check burier composition and type.
	or type Excessive salt in sample	Desalt sample.
Buffer leaking from inner chamber	Incomplete gasket seal	Set up again with sliding clamps tighter.
Problem: Total Protein	Cause	Solution
	Cause	Solution
Staining		
Bands not visible	No protein in gel	Stain with another method to confirm there is
		protein.
	Imaging system malfunctioning	Check instrument manual for troubleshooting or
	Incorrect imaging parameters were	contact imaging instrument manufacturer.
	Incorrect imaging parameters were used	Check Instrument manual.
Poor staining sensitivity	Dirty staining trays	Clean staining trays and other equipment with
Foor staining sensitivity	Dirty Stairing trays	laboratory glassware cleaner.
	Insufficient stain volume	Follow recommendations for stain volume
	msamerent stam volume	(appropriate to gel size).
	Insufficient staining time	Increase staining time.
	Reuse of staining solution	Repeat staining protocol with fresh staining
	G ******	solution.
High or uneven background staining	Staining trays or equipment dirty	Clean staining trays and other equipment with
	, , , , , ,	laboratory glassware cleaner.
	Too much time in staining solution	Restrict duration of incubation in staining solutions
		as recommended in protocol.
		Wash gel in water or retrospective destaining
		solution for >30min.
	Reagent impurities	Use high-purity water and reagents for staining.
Speckles or blotches in gel image	Particulate material from reagents,	Clean staining trays thoroughly.
	staining tray, dust or gloves	Decrease time that gels and staining solution are
		exposed to open air.
		Use dust-free gloves and handle gels only by
		edges.
Uneven staining	Insufficient shaking during staining	Agitate gel during staining.
Gel shrinkage	Gel dehyrated	Transfer gel to water for rehydration.

Problem: Evaluation of	Cause	Solution
Separation		
Diffuse or broad bands	Poor quality acrylamide or bisacrylamide incomplete polymerization	Use electrophoresis-grade reagents. Check polymerization conditions.
	Old SDS or sample buffer	Prepare fresh solutions.
	Gel temperature too high	Use external cooling during run or run out a lower voltage.
Bands 'smile' across gel, band	Excess heating of gel; center of gel	Check buffer compostion; buffer not mixed well, or
pattern curves upward at both sides of gel	runs hotter than either end	buffer in upper chamber too concentrated. Prepare new buffer, ensuring thoroughly mixing, especially when diluting 5x or 10x stock.
	Power conditions excessive	Do not exceed recommended running conditions. Decrease power setting from 200V to 150V or fill lower chamber to within 1cm of top of short plate.
		Fill inner and outer buffer chambers to ensure that
	Insufficient buffer	wells are completely covered.
Smiling or frowning bands with gel lane	Overloaded proteins Sample preparation/ buffer issues	Load less protein. Minimize salts, detergents and solvents in sample preparation and sample buffers.
	Incorrect running conditions	Use correct voltage.
Skewed or distrorted bands, lateral band spreading	Excess salt in samples	Remove salts, from sample by dialysis or desalting column prior to sample preparation.
	Ionic strength of sample lower than that of gel	Use same buffer in samples as in gel.
	Insufficient sample buffer or wrong	Check buffer composition and dilution
	formulation	instructions.
	Diffusion prior to turning on current	Minimize time between sample application and power startup.
	Diffusion during migration through	Increase %T of stacking gel to 4.5% or 5%T.
	stacking gel	Increase current by 25% during stacking.
	Uneven gel interface	Decrease polymerization rate.
		Overlay gels carefully.
		Rinse wells after removing comb to remove residual acylamide.
Vertical streaking	Overloaded samples	Dilute sample. Selectively remove predominant protein in sample (fractionate).
	Sample precipitation	Reduce voltage by 25% to minimize streaking. Centrifuge samples to remove particulate prior to sample loading. Dilute sample in sample buffer.
Fuzzy or spurious artefactual bands	Concentration of reducing agent too low	Use 5% BME or 1% DTT.
Protein bands do not migrate down as expected	Bands of interest may be neutral or positively charged in buffer used; pH of bands must be -2pH units more negative than pH of running buffer	Use SDS-PAGE or a different buffer system in native PAGE or IEF.

Section 6 Product Information

6.1 Catalogue numbers and product descriptions

Catalogue No.	Product description
CVS10D	omniPAGE Mini, 10 x 10cm Dual, 2 sets of Glass Plates, 1mm thick bonded Spacers, 2 x 12
CV310D	sample, 1mm thick combs. CLAMP VERSION
CVS10DSYS	omniPAGE Mini, 10 x 10cm Dual, 2 sets of Glass Plates, 1mm thick bonded Spacers, 2 x 12
CV310D313	sample, 1mm thick combs including caster. CLAMP VERSION
CVS10PRE	omniPAGE Mini, 10 x 10cm Dual. No accessories. CLAMP VERSION
CVS10DSYS-CU	omniPAGE Mini, 10 x 10cm Dual, 2 sets of Glass Plates, 1mm thick bonded Spacers, 2 x 12
CV310D313-C0	sample, 1mm thick combs including caster. CLAMP VERSION, External casting upstand
CVS10EXCASTER	External Casting Stand - No Casting Base
CVS10EXCASTERSYS	External Casting System - Upstand+ Base
VS10DCAST	10 x 10cm Casting Base
VS10DCASTM	Replacement Silicone Mat for 10 x 10cm Casting Base
CVS10DIRM	Inner Running Module
VS10ICB	Mini Cooling Pack
VS10NG	10 x 10cm Notched Glass Plates 2mm thick (pk/2)
VS10PG	10 x 10cm Plain Glass Plates 2mm thick (pk/2)
VS10NGS0.75	10 x 10cm Notched Glass Plates with 0.75mm Bonded Spacers (pk/2)
VS10PGS0.75	10 x 10cm Plain Glass Plates with 0.75mm Bonded Spacers (pk/2)
VS10NGS1	10 x 10cm Notched Glass Plates with 1mm Bonded Spacers (pk/2)
VS10PGS1	10 x 10cm Plain Glass Plates with 1mm Bonded Spacers (pk/2)
VS10NGS1.5	10 x 10cm Notched Glass Plates with 1.5mm Bonded Spacers (pk/2)
VS10PGS1.5	10 x 10cm Plain Glass Plates with 1.5mm Bonded Spacers (pk/2)
VS10NGS2	10 x 10cm Notched Glass Plates with 2mm Bonded Spacers (pk/2)
VS10PGS2	10 x 10cm Plain Glass Plates with 2mm Bonded Spacers (pk/2)
VS10DP	Dummy Plate, 10 x 10cm
VS10S0.75	10cm Spacers - 0.75mm (pk/2)

VS10S1	10cm Spacers - 1mm thick (pk/2)
VS10S1.5	10cm Spacers - 1.5mm thick (pk/2)
VS10S2	10cm Spacers - 2mm thick (pk/2)
RPW-0.2	Replacement Platinum Wire - 0.2mm, 50cm

Multiple Minigel Casting

CSL-6CAST	6 gel caster for 8 x 10cm or 10 x 10cm gels
CSL-12CAST	12 gel caster for 8 x 10cm or 10 x 10cm gels
CSL-24CAST	24 gel caster for 8 x 10cm or 10 x 10cm gels

6.2 Combs – MC Denotes Multi Channel Pipette compatible

Code	Description	Sample Volume μl for a 5mm thick gel
VS10-1-0.75	Comb 1 Prep, 1 Marker, 0.75mm thick	500
VS10-5-0.75	Comb 5 sample, 0.75mm thick	70
VS10-8MC-0.75	Comb 8 sample MC, 0.75mm thick	40
VS10-9-0.75	Comb 9 sample, 0.75mm thick	35
VS10-12-0.75	Comb 12 sample, 0.75mm thick	25
VS10-16MC-0.75	Comb 16 sample MC, 0.75mm thick	20
VS10-20-0.75	Comb 20 sample, 0.75mm thick	15
VS10-1-1	Comb 1 Prep, 1 Marker, 1mm thick	650
VS10-5-1	Comb 5 sample, 1mm thick	100
VS10-8MC-1	Comb 8 sample MC, 1mm thick	60
VS10-9-1	Comb 9 sample, 1mm thick	50
VS10-10-1	Comb 10 sample, 1mm thick	40
VS10-12-1	Comb 12 sample, 1mm thick	35
VS10-16MC-1	Comb 16 sample MC, 1mm thick	25
VS10-20-1	Comb 20 sample, 1mm thick	20
VS10-1-1.5	Comb 1 Prep, 1 Marker, 1.5mm thick	1000
VS10-5-1.5	Comb 5 sample, 1.5mm thick	140
VS10-8MC-1.5	Comb 8 sample MC, 1.5mm thick	80
VS10-9-1.5	Comb 9 sample, 1.5mm thick	70
VS10-10-1.5	Comb 10 sample, 1.5mm thick	30
VS10-12-1.5	Comb 12 sample, 1.5mm thick	50

VS10-16MC-1.5	Comb 16 sample MC, 1.5mm thick	40
VS10-20-1.5	Comb 20 sample, 1.5mm thick	30
VS10-1-2	Comb 1 Prep, 1 Marker, 2mm thick	1300
VS10-5-2	Comb 5 sample, 2mm thick	200
VS10-8MC-2	Comb 8 sample MC, 2mm thick	120
VS10-9-2	2 Comb 9 sample, 2mm thick 100	100
VS10-10-2	Comb 10 sample, 2mm thick	80
VS10-12-2	Comb 12 sample, 2mm thick	70
VS10-16MC-2	Comb 16 sample MC, 2mm thick	50
VS10-20-2	Comb 20 sample, 2mm thick	40

6.3 Catalogue numbers and product descriptions for CSL Related Products

Catalogue No.	Product description
CSL-PPL	CSL Pink Plus Prestained Protein Ladder, 10-175kDa, with 10, 40 & 90kDa reference bands, 1x 500µL vial.
CSL-BBL	CSL BLUE Wide Range Prestained Protein Ladder, 10-245kDa, with 25 & 75kDa reference bands, 1x 500μL vial.
CSL-TGSDSP	Powdered Tris-Glycine-SDS Running buffer - 10 Pouches(10 litres/pk)
CSL-TGP	Powdered Tris-Glycine Running buffer - 10 Pouches(10 litres/pk)
CSL-TTSDSP	Powdered Tris-TRICINE-SDS Running buffer - 10 Pouches(10 litres/pk)
CSL-MSDSP	Powdered MOPS-SDS buffer Running buffer - 10 Pouches(10 litres/pk)
TG10X1L	Cleaver Buffer Tris-Glycerine 10 x 1litre
TG10x5L	Cleaver Buffer Tris-Glycerine 10 x 5litre
TG-SDS10X1L	Cleaver Buffer Tris-Glycerine SDS 10 x 1litre
TG-SDS10X5L	Cleaver Buffer Tris-Glycerine SDS 10 x 5litre
CSL-GELX4	4mm x 1mm, Gel Cutting Tips, 250/ bag
CSL-GELX4RACK	4mm x 1mm, Gel Cutting Tips, 5 racks of 48
CSL-GELX6.5	6.5mm x 1mm, Gel Cutting Tips, 250/ bag
CSL-GELX6.5RACK	6.5mm x 1mm, Gel Cutting Tips, 5 racks of 48
CS-300V	OmniPAC, MIDI 300V 700mA 150W - 110/230V
CS-500V	OmniPAC, MAXI 500V 400mA 200W - 110/230V
VS10BI	OmniBlot Mini Insert - including 4 cassettes, 16 foam pads
VS10DCi	omniPAGE Mini Tube Gel Insert - including 10 glass tubes
OMNIDOCIPROSAFE	OMNIDOC-i plus Blue LED Epi-illumination Module (OMNIDOC-BL), and 520, 560 & 580nm filters (OMNIDOC-SYBR, -AF560 & -AF580); and White Light Table (OMNIDOC-WLT)
CVS10CBS	Complete system for Mini Vertical Electrophoresis & Blotting including: Vertical unit, Blotting insert & accessories. CLAMP VERSION.
SB10	OmniBlot Mini, 10 x 10cm Blotting System, including 4 cassettes
SB20	OmniBlot Maxi, 20 x 20cm Blotting System, including 4 cassettes
CV20	Cleaver Pipette - Volume; 2 - 20ul
CSLVORTEX	Cleaver Vortex Mixer with general purpose head, 230V
CSLQSPIN	Mini Centrifuge complete with 1.5/2.0 ml rotor, strip tube rotor, 0.5 and 0.4 ml adapters, 230V, Purple lid
TCDB-01	The Cube Dry Bath Incubator (one block unit); without block 220V
CSL-UVCAB	UV sterilisation cabinet with timer, four UV lights and white light, no Tray - 230V
SD20	Semi Dry Maxi, 20 x 20cm System
3223	omniPAGE Mini Wide, 20 x 10cm Dual, 2 sets of Glass Plates with 1mm thick bonded Spacers, 2 x 24 sample,
VS10WD	1mm thick combs, cooling pack
VS10WDSYS	omniPAGE Mini Wide, 20 x 10cm Dual, 2 sets of Glass Plates with 1mm thick bonded Spacers, 2 x 24 sample,
	1mm thick combs, cooling pack including caster
VS10WDSYS-CU	omniPAGE Mini Wide, 20 x 10cm Dual, 2 sets of Glass Plates, 1mm thick bonded Spacers, 2 x 24 sample, 1mm
	thick combs including caster, External casting upstand
VS20WAVESYS	VS20WAVE Maxi, 20 x 20cm Dual with Glass Plates with bonded 1mm thick spacers, 2x 24 sample combs, cooling coil, dummy plate and Casting Base
VS20WAVESYS-CU	VS20WAVE Maxi, 20 x 20cm Dual, 2 sets of Glass Plates, 1mm thick bonded Spacers, 2 x 24 sample, 1mm thick combs, cooling coil, dummy plate;includes caster and External casting upstand
VS20WAVE-EC	VS20WAVE External Casting Stand - No Casting Base
VJZUVVAVE-EC	V320VVAVE EXTERNAL CASHING STAIN - IND CASHING DASE

Section 7 Warranty

The Cleaver Scientific Ltd. (CSL) Electrophoresis units have a warranty against manufacturing and material faults of twelve months from date of customer receipt.

If any defects occur during this warranty period, CSL will repair or replace the defective parts free of charge.

This warranty does not cover defects occurring by accident or misuse or defects caused by improper operation.

Units where repair or modification has been performed by anyone other than CSL or an appointed distributor or representative are no longer under warranty from the time the unit was modified.

Units which have accessories or repaired parts not supplied by CSL or its associated distributors have invalidated warranty.

CSL cannot repair or replace free of charge units where improper solutions or chemicals have been used. For a list of these please see the Care and Maintenance subsection.

If a problem does occur then please contact your supplier or CSL:

Cleaver	Scie	ntific	Ltd.

Unit 41

Somers Road Industrial Estate

Rugby

Warwickshire

CV22 7DH

Tel: +44 (0)1788 565300

Fax: +44 (0)1788 552822

Email: info@cleaverscientific.com

Record the following for your records:

Model
Catalogue No
Date of Delivery
Warranty Period
Serial No
Invoice No
Purchase Order No